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I. INTRODUCTION

A. Problem Statement

Git is a distributed version control system that allows
multiple users to collaborate on software development projects.
Once a user has completed some changes to a codebase,
they can save those changes to the repository by creating a
commit with those changes. Commits store diff information,
showing the lines of code that were updated since the last
time a commit was made (Fig. 1). Each commit also has an
associated message that should provide a descriptive summary
of the changes introduced in the commit.

Currently, there are no widespread introductory programs
through which users can learn what makes a good commit
message; this only comes through experience–using git for an
extended period of time and understanding the intended utility
of a message. This, unfortunately, makes it easy for new users
to develop bad habits and add undescriptive messages to the
commits they create while they are still learning (Fig. 2).

Our goal is to create a set of tools that help users create
messages which are good descriptions of the changes they are
making. This in the moment guidance would allow new users
to gain an understanding of what a typical commit message
might look like in their current context, as well as assist
experienced users in quickly generating relevant messages.

Fig. 1. An example of a diff (upper) with its associated commit message
(lower). The red shaded area highlights lines that were removed, while the
green shaded area highlights lines that were added. Note that this example
is from a Jupyter Notebook written in Python, which was not used in our
datasets, since we only used repositories written in Java.

B. Background

Our work is valuable at educational institutions like UC
Berkeley since git is generally introduced to computer science

students in introductory programming courses, such as Cal’s
CS 61B: Data Structures. However, it can be difficult for first-
time users to know what descriptions are the best when using
the git software. For some students, this is not an issue, as they
never encounter a situation in which they require the use of
the version control component of git. However, many students
eventually reach a point at which they must look back at their
previous commits, in order to find the exact point at which
they made a certain change. If these students do not have
adequate commit messages, this process becomes exceedingly
difficult and frustrating, both for themselves and for those they
are working with. Poor habits formed here can have negative
consequences when these students enter industry and other
professional settings.

Our goal is to use professional git repositories to train a
model which can eventually assist Cal students in determining
the goodness of their commit descriptions, in order to allow
them to use create more descriptive commit messages.

We hope to achieve this in three ways. First, we hope
to create a tool which allows users to see what typical
commit messages look like, independent of a specific project
or commit message. This should help first time users become
acclimated to the typical structure and content of a git commit
message, as it can be daunting to decipher what makes a good
message when first using git. Second, we want to provide
users with a discriminator which assists users by informing
them of whether a given commit message is a good fit for the
diff that it attempts to describe. This information will provide
users with input as to whether their proposed commit message
is adequate, as determined by this tool, allowing users to be
made aware if their messages are missing key information or
are malformed. Third, we intend to give users the ability to use
our model to generate complete commit messages, based on a
specific commit diff. Providing users with suggested commit
messages that are relevant to the changes they have just made
would assist new users by displaying realistic examples of
messages they should be writing and allow veteran users to
spend less time thinking of a descriptive commit message for
the code they modified, while preventing both types of users
from forgetting key details present in the commit.

With better messages, students will be able to better doc-
ument their code, allowing them to work more effectively,
whether as an individual or as a member of a team.



Fig. 2. Screenshots of example commits with good (upper) and bad (lower) messages associated with the changes in the commit. Note how the good commit
message directly relates to the contents of the files which have been altered, while the bad message is vague and unrelated to the changes in the codebase.

II. RELATED WORK

A. Towards Automatic Generation of Short Summaries of
Commits [3]

The work in [3] attempts to generate one-sentence commit
messages that start with a verb-object pair. First, the authors
focus on classifying each diff into one of fifteen separate verb
classes. After this, the authors discuss methods of generat-
ing messages, though they do not fully explore the commit
message generation process. Additionally, they show that it
is difficult to achieve high classification accuracy on the verb
matching task. This leads us to believe that a classification-
based approach that only works on one word at a time may not
be an effective way to generate commit messages. Therefore,
we do not pursue using similar models as the work in [3],
though we do use similar data cleaning and preprocessing
techniques. While some of our models generate the commit
messages one word at a time, we use recurrent architectures
that allow the next generated word to be a function of all
previously generated words. We also train a language model
assuming the user can specify a good choice for a first word,
allowing our models to generate the rest of a commit message
with some guidance.

B. Automatically Generating Commit Messages from Diffs
using Neural Machine Translation [4]

The work in [4] extends the original work in [3] and
attempts to generate commit messages after classifying them
according to common sentence structures. This work involves
an RNN Encoder-Decoder model to generate messages. We
use similar architectures while also experimenting with more

complicated, attention-based architectures in an effort to gen-
erate more relevant messages. The RNN Encoder-Decoder
model’s hidden state has a lower dimension than our hidden
state sizes, so this should make our model more able to
approximate a complex function that maps diffs to commit
messages.

III. APPROACH

A. Data Collection and Processing

We employed the use of two kinds of data, professional
repositories and student repositories.

Professional repositories were scraped from GitHub.com, an
online service for sharing Git repositories. We made an API
call to identify the 100 most starred repositories written in the
Java language. Stars on GitHub.com signify repositories that
users find interesting, and act as appreciation to the repository
owner [6]; it is a measure of community popularity. Due to
the high visibility, activity, and community engagement such
popular repositories receive, we define their commit messages
as the standard for goodness; they are successful in achieving
their purpose of informing other users of the history of the
codebase. We used a python script to clone each repository,
and write the ”git log -p” and ”git log –format=%s” outputs
to .diff and .txt files. We then used those respective files to
extract diff information and message information, respectively,
for each commit.

60% of these repositories were used to build the training
dataset, 20% were used to build the validation dataset, and the
remaining 20% were used to build a testing dataset. For each
of these three groups, we used only the first 200 commits from
each of the associated repositories, due to space limitations. If



a commit message was empty, or contained a default message
such as Merge branch or Merge pull request, it was discarded
and the next subsequent commit was used as a replacement.
No more than 1000 commits were examined in each repository,
before moving on to the next. Through this process two
dictionaries, one mapping the commit hashcode to the commit
message, and one mapping the commit hashcode to the diff
content, were created and written as json files, for each of the
three dataset splits.

Student repositories were obtained from the Spring 2018
semester of the CS 61B course, here at UC Berkeley. This
data is confidential as it contains student work and solutions
to actively used programming assignments. The data was used
with permission from Professor Joshua Hug. These reposi-
tories were processed in the same way as the professional
repositories. Instead of dividing these repositories into three
groups, a pair of json files, representing the messages and
diffs, was generated for each of the 15 selected repositories.
There is no need to split the data into groups since this data
was not used for training, and a model trained on professional
repositories could be used to generate messages on each of
these repositories independently.

The 15 student repositories were chosen first by plotting the
grade distribution of all of the students in the course (Fig. 3).
Three ranges of scores were identified as potential areas of
interest: 3200 - 3700 points, 3000 - 3200 points, and 2000 -
2500 points. Five student repositories were randomly sampled
from each of these ranges.

Fig. 3. A distribution plot of the total points students accumulated in Spring
2018. These scores are not weighted by assignment category, as they were
in the actual course. This curve can be used to identify repositories from a
diversity of experience levels.

B. LSTM-Based Language Model

In our first attempt at commit message generation, we
implement and train a language model on commit messages
from professional repositories. The language model is an RNN
composed of a 1-Layer LSTM with cell size 256. In practice,
this model would require at least one starter word in order
to begin generating a commit message. While the words
generated by the language model may not be specific to a diff,
they will be influenced to fill in general language surrounding
common changes if the starter word or words are specific

to the diff. Additionally, the model generates sequences with
<UNK> tokens to represent unknown words that may help
complete a more relevant commit message. We discuss how
this is handled in the Results section.

C. Transformer-Based Summarization Model

For the transformer model, we tokenized the commit mes-
sage and diff pairs, and limited the lengths to 30 tokens and
100 tokens, respectively. We next converted them into masked
feature vectors by keeping track of a dictionary which kept
track of all the words that appeared. These feature vectors
were then fed as inputs to our transformer.

As for the architecture, we implemented the attention-based
transformer from Vaswani et al. [2] (Fig. 4). We fed this
transformer our vectorized inputs with masks and trained it
using the Adam optimizer with softmax loss. With large batch
sizes (128) the model had training losses around 2.0 but had
validation loss of 8.9, which was indicative of overfitting. With
smaller batch sizes the model trained slower but did not overfit
the data as much, resulting in a validation loss of around 5.0.

Fig. 4. Diagram of the transformer architecture [2]. We implement this
architecture as a component of our summarization model.

D. BERT

We then moved on to the BERT model, a bi-directional
transformer (Fig. 5). We used Google's released TensorFlow
BASE, uncased (case insensitive) pre-trained model [7], which



performs sentence-pair classification. To fine-tune it to dis-
criminate between good and bad commit messages for a given
diff, we fed BERT our professional message and diff pairs, as
well as 5 times as many negatively sampled mismatched pairs
constructed at random. We performed WordPiece tokenization
[8], with a limit of 128 tokens each. Hyperparameter tuning
was performed on the learning rate.

Once a satisfactory BERT discriminator was trained, we
leveraged it to generate messages for a provided diff. We first
composed a new vocabulary out of all the words students
used in their commit messages, and took any word that was
used over 500 times throughout the semester. This is desirable
since it both provides the model with the ability to use words
specific to the domains of our assignments (such as BearMaps,
proj3, autograder), and also if there are commonly used but
inappropriate words used by students (such as hi, yolo, and
expletives), the model has the potential to teach students to
avoid using them by strongly suggesting more constructive
alternatives. When then tokenized and fed into BERT each of
the vocab words paired with the desired diff. The top 5 pairs
which were most likely to be true pairs were selected in a beam
search fashion. Following this, each of these 5 words had each
of the vocabulary words appended to them individually, and
were paired with the provided diff message once more, before
being fed into BERT again, allowing the process to repeat.

Fig. 5. The BERT architecture as shown in the original paper [1]. It is a
bi-directional, multi-layer transformer.

E. GPT-2

We also attempted to use the GPT-2 from OpenAI, as GPT-
2 is better suited for text generation tasks while still relying on
transformers and attention; however, we found these models
much more difficult to train and interact with. Although these
models were not employed in this design, they seem promising
and we recommend incorporating them in future work.

IV. RESULTS

A. LSTM-Based Language Model

1) Language Model Training & Results: The language
model is trained using a learned vocabulary embedding that
contains embeddings for 20,000 words, including <START>,
<UNK>, and <PAD> tokens. To train the model, we use a
learning rate of 0.001 and a batch size of 512. We train the
model for 20 epochs (each epoch equivalent to a full pass
through the training set) which takes a few hours to complete

on the Tesla K80 GPU provided by Google Colab. Training
for longer than 20 epochs resulted in an increasing validation
loss. In order to generate clear commit messages, we provide
the trained model with a starting word (typically the past
participle of a verb, like Updated or Added). The model then
appends words one at a time to the message, and each word is
determined by all previous words in the message. Generating a
message using the language model requires at least one starter
word, allowing us to avoid the problem of using classification
to pick that word as explored in [3]. Realistically, if this tool is
used by 61B students, they would be able to input one or more
words at the beginning and allow the model to autocomplete
a viable commit message.

Fig. 6. Example messages generated by the language model.

2) Handling <UNK> Tokens: The model learns to fill
in certain portions of a message with the <UNK> token
for unknown words. We propose two methods for handling
these tokens. First, the message with <UNK> tokens can be
provided to students with the tokens replaced with blanks,
allowing students to fill in these portions with terms that are
likely specific to the current assignment. These terms are also
unlikely to be found in the professional repositories if they are
specific to 61B projects (such as BearMaps, proj3, autograder).
A second way to remove <UNK> tokens is to force the
generating process to only pick words from the vocabulary
set that are not <UNK> tokens. We implement a version of
this to generate the messages seen in Fig. 6. If the most likely
word at some time is <UNK>, we choose the next most likely
word instead and append it to the sentence.

B. Transformer-Based Summarization Model

The transformer architecture produced mixed results. After
a few hours of training we had a training loss of 4.578874,
which was a rather underwhelming result (Fig. 7). Running the
transformer on the test set and sequentially taking the max
of each logit gave us strings of text that barely resembled
commit messages. However, most of the commit messages
generated were close to unusable. We propose multiple reasons
that this did not work. First, all of the repositories were not
in the same human language. Even though we took the top
100 repositories on Github, there were a couple repositories
which were in Chinese, which bloated our vocabulary size
and forced it to teach unnatural language structures. Second,
the quality of the commit messages themselves were also low
quality. This is mostly because we limited ourselves to short
commits and short diffs, but many commit messages, such as
:memo: Writing docs, or bug fixed were uninformative and
did not directly reference the code, making it very difficult



Fig. 7. Test examples for the transformer model

for the transformer to train. Finally, the way we generate
commit messages for the test cases may not have been optimal.
Instead of taking the highest max logit for each element in the
sequence, it may have been more beneficial to keep track of
the K best logits for each element, to keep options open for
the transformer.

C. BERT

We performed hyper-parameter tuning on our BERT dis-
criminator (Fig. 8). The dataset used here is a sample of 40,000
professional message/commit real and negatively sampled
pairs, at a 1:5 ratio as described in the Approach section.
While the F1 score generally offers a metric which balances
the tradeoff between precision and recall, since the F1 score of
the two smaller learning rates tested where negligibly similar,
we decided that 2e-5 would be the safer option since it had
better precision, and precision is unaffected by large quantities
of negative samples [9], which is what we had here. Further,
since the optimal learning rate matched that which was used
by Google in their fine-tuning demonstration [10], we decided
to adapt the remainder of their hyperparameters (batch size of
32, warm-up of 0.1). For the final BERT discriminator model,
we increased the number of epochs from 0.5 to 4 and used
the optimal (Google’s) hyperparameter values. It achieved an
accuracy of 0.8514, an F1 score of 0.5526, and a precision
of 0.5547. The improvement after this additional training time
was little, so longer sessions of training were not attempted.

For the BERT generator, we designed the algorithm of top-5
beam search to discriminate the most likely next words from
the student vocabulary set that should match a given student
commit, as described in the Approach section. Qualitatively,
one example we generated a message for is shown in Fig.
9. Here, the student made a one-line change in this commit.
They chose the message Tiny bug fixed, which is not a poor
message choice given that this edit likely did correct a small
error, but it also has potential to be improved. Running the

Fig. 8. Results of hyperparameter tuning on the learning rate of the fine-tuning
process of our BERT discriminator.

Fig. 9. Results of hyperparameter tuning on the learning rate of the fine-tuning
process of our BERT discriminator.

generator, some sentences in generated over the iterations are
as follows:

• (’proj3’, ’node’, ’proj1’, ’nodes’, ’proj2’)
• (’proj3 ’, ’nodes handle’, ’nodes because’, ’proj3 ready’,

’nodes does’)
• (’nodes does new’, ’proj3 being’, ’proj3 ready has’,

’nodes does started’, ’nodes does edits’)
• (’proj3 being tiny’, ’nodes does edits fixed’, ’nodes does

started hue’, ’proj3 ready has completed’, ’nodes does



new hi’)
• (’proj3 ready has completed 8’, ’proj3 ready has com-

pleted changes’, ’proj3 being tiny tested’, ’proj3 being
tiny hard’, ’nodes does started hue folder’)

• (’proj3 ready has completed changes credit’, ’proj3 ready
has completed 8 ugh’, ’proj3 ready has completed 8
small’, ’nodes does started hue folder remove’, ’proj3
ready has completed changes runtime’)

• (’proj3 ready has completed changes credit string’, ’proj3
ready has completed 8 small method’, ’nodes does started
hue folder remove ensure’, ’proj3 ready has completed
changes runtime statement’, ’nodes does started hue
folder remove merging’)

The grammar of these samples is fair, and some key-
words were successfully identified; this was indeed work from
Project 3, and the class that is edited is called Node.java. The
generator also agreed with the student that the change was tiny,
and perhaps this change has something to do with iteration
over a keySet of the HashTable. Unfortunately, quantitative
results do not seem applicable here; we want to generate
messages better than the student message, not to match it.
It is also difficult to manually identify student repositories
with good commit messages to improve our fine-tuning or
to validate against.

V. LESSONS LEARNED

From our results, we have learned that language models
are often not stable during training, which can lead to a wide
range of results. Ours, in particular, is able to avoid problems
that other models often run into by requiring a starter set of
words in order to provide it with the context needed to generate
messages.

Additionally, the transformer architecture may require more
modifications than we anticipated, in order to train on samples
as small as the commit messages extracted from professional
repositories. This model seems promising, though, and ad-
justments such as beam search, separating data by language,
and training on longer messages would likely improve this
approach.

Finally, our modified BERT model, while able to generate
interesting suggested messages, has room to improve as well.
Something that we noted was that this model appeared to
be heavily influenced by the fact that the student repositories
used were not necessarily adequate samples for training, given
that we are attempting to improve upon student messages.
A possible solution to this would be for us to use course
staff repositories as they completed the student projects, giving
better examples on which to train our model.

VI. FUTURE WORK

There are several possible ways to extend the current work
we have done for each of the three approaches. First, we were
unable to explore training an ensemble of our models for any
one task due to time and computational constraints, though this
could help us achieve better results on the commit message
generation tasks using the RNN or transformer models. This

way, each model could produce a candidate for the next word
of a commit message, and the final word to be added to the
message could be decided using either a vote between the
models or a more complicated averaging using logits estimated
by the models.

While we did not pursue constraining commit messages to
different types of sentence structures as was partially explored
in [3], this direction remains open for additional research.
After looking through much of the dataset we collected,
many commit messages tend to follow a similar sentence
structure. One could develop a model to generate different
types of messages for each type of sentence, and then pick
the sentence with a maximal overall likelihood under the
general, unconstrained language model. This would be another
approach that may result in clearer, simpler commit messages.

VII. TOOLS

As our project involved working with text, we started
building models using techniques taught in the course. This
meant that we primarily used learnable vocabulary embeddings
for the text while exploring transformer-based or recurrent
architectures for producing commit messages. As several pop-
ular models involving deep neural networks and text perform
well with learnable vocabulary embeddings, we felt that this
element of our models would not require significant changes.
Therefore, most of our experimentation concerned various
tweaks to model architectures and hyperparameters.

However, after several updates to the initial language model
and summarization model, we were unable to improve our
training and converge to lower losses. Additionally, we were
applying a patchwork of modifications to the outputs of these
models to ensure that they were more grammatically correct
and coherent; however, these techniques did not work as
intended for every sample diff. We then pivoted to training
proven state-of-the-art architectures on our dataset to see if
we could beat the performance of our previous models. As
BERT is well-documented with pre-trained weights and code
freely available online, we chose to start using it to help
motivate better commit messages. BERT naturally was able
to learn to discriminate between relevant and non-relevant
commit messages, as this is similar to one of the tasks it
was original trained upon by the inventors. There seems
to be some disagreement however over whether BERT can
successfully lend itself to tasks involving text generation.
While the authors, and Wang and Cho insist that it can by
treating BERT as a Markov Random Field by masking out one
or multiple tokens at a time [11], the simple experiments of
others do not substantiate these claims [12], perhaps exposing
the fact that BERT is bidrectional and relies on seeing into the
future. Where BERT fails in generation, GPT-2 may offer an
improvement, but we leave this model for future exploration.

For our development tools, we used Tensorflow to im-
plement our models and primarily wrote Python scripts for
collecting, cleaning, and filtering our datasets. Additionally,
we relied on Google Colab and its associated free K80 GPU
when training our models on larger batches for longer periods



of time. For short experiments or hyperparameter searches
involving shallow training, we were able to train on local
machines without GPUs. Pre-processed data was stored into
json files for accessibility. Since tokenization of BERT features
was time consuming, the discriminator’s features were saved
as pickle files for ease of use.

VIII. TEAM CONTRIBUTIONS

• Aman Dhar (23%) - Modified language model archi-
tecture to generate commit messages, trained language
model for generating commit messages, created signifi-
cant portion of poster.

• Jackson Leisure (22%) - Initiated poster design, created
significant portion of poster, helped modify conceptual
model architecture to achieve more useful messages,
helped gather student repo data, maintained contact with
assigned GSI.

• Riku Miyao (24%) - Helped gather professional repo
data. Preprocessed data so that it would work for the
transformer. Worked on generating commit messages
through the transformer architecture.

• Matthew Sit (31%) - Helped gather student repo data,
performed all data pre-processing for both student and
professional repos, identified student commits to use as
examples to demonstrate model performance, copy-edited
the poster, primary owner/developer of the BERT model
aspects of the project, attempted to incorporate GPT-2 but
decided not to finally pursue it due to time limitations.
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