
Git Good
A Deeper Look at Generating Better Commit Messages

Group 47: Aman Dhar, Jackson Leisure, Riku Miyao, Matthew Sit

Problem Statement

● Filtered out some common commit messages that
deal with special cases, as these will not be as helpful
to predict for students
○ For example, merges generally have a default

message generated by git (“Merge branch x of
project” or “Merge pull request #x from project”,
etc.)

● Need to use samples of the data due to memory
constraints

● For language model, used vocabulary of size 20,000,
with <start>, <pad>, and <unk> tokens included

Background

● Wrote scripts to clone different public Java
repositories and extract pairs of corresponding git
diffs and commit messages

● Generally chose well-established repositories with
high popularity
○ Training set: 15,000 diff-message pairs
○ Validation set: 3,600 diff-message pairs
○ Test set: 4,400 diff-message pairs

● Obtained git diffs and commit messages from 145 CS
61B student repositories from the Spring 2018
semester (used with permission; confidential)

Data Sources

● Primarily experimenting with three models: an
LSTM-based language model, a transformer-based
summarization model, and state-of-the-art BERT
○ Language Model

■ Task: Input first n words of commit (ie.
implemented, updated, added new feature,
etc.) and generate rest of commit message

■ Potentially could help students autocomplete
commit messages

■ LSTM cell architecture with cell size 256
○ Summarization Model

■ Task: Input git diff, generate and output a
summary of the diff to represent a potential
commit message

■ Transformer Architecture [1] with attentional
RNN encoder-decoder (see Figure 3)

○ Bidirectional Encoder Representations from
Transformers (BERT) Model [2]
■ Tasks

● First, feed in diff-message pairs to
determine if pair is true pair or
negatively-sampled pair

● Then modify/extend architecture to
generate messages

Model Architecture

● Language Model Results
○ Example messages generated by model

■ “added a convenience method to the new api
infrastructure”

■ “finished the test case for # version”
■ “update readme with release 2”
■ “changed the default value for the new api”

○ Loss converges to 4.5 after 15 epochs of training
● Summarization Model Results

○ Under development
● BERT Model Results

○ See Figure 4 below

Results

● Git is a distributed version control system that allows
multiple users to collaborate on software
development projects

● Once a user has completed some changes to a
codebase, they can save those changes to the
repository by creating a commit with those changes

● Commits store diff information, showing the lines of
code that were updated

● Each commit has an associated commit message that
summarizes the changes introduced in the commit

Data Cleaning

Many large-scale software projects make use of git,
one of the most popular version control systems.
When using git, users are able to describe the changes
they make to a codebase at each step. At UC Berkeley,
git is generally introduced to computer science
students in CS 61B, but it can be difficult for first-time
users to know what descriptions are the “best” when
using the software.

Our goal is to use professional git repositories to train
a model which can eventually assist Cal students in
determining the “goodness” of their commit
descriptions, in order to allow them to use git more
effectively.

Figure 1: An example of a diff (upper) with its associated
commit message (lower). The red shaded area highlights
lines that were removed, while the green shaded area
highlights lines that were added.

Figure 2: Screenshots of example commits with “good”
(upper) and “bad” (lower) messages associated with the
changes in the commit. Note how the “good” commit
message directly relates to the contents of the files which
have been altered, while the “bad” message is vague and
unrelated to the changes in the codebase.

References:
[1] Vaswani, Ashish et al. “Attention is All You Need” (Dec 2017): https://arxiv.org/pdf/1706.03762.pdf
[2] Devlin, Jacob et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” (Oct 2018): https://arxiv.org/pdf/1810.04805.pdf

Descriptive Commit Message

Undescriptive Commit Message

Figure 3: Diagram of the transformer architecture. We
implement this architecture as a component of our
summarization model (see 2nd model of Model
Architecture).

Figure 4: Results outputted from BERT model on the
discriminating pairs task (task 1). Further training is required,
as misclassification is still fairly high.

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1810.04805.pdf

	Poste (1).pdf

