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Colorimetric Detection of pH Strips
Aman Dhar, Rudra Mehta, and Matthew Sit

Abstract—In this paper, we apply several machine learning
techniques and models for the purpose of classifying and es-
timating the pH of solutions given raw image data of pH test
strips. We replicate and critique much of the work performed by
Mutlu et. al [2], who used LS-SVM and claimed to achieve 100%
classification. We believe that this high accuracy was the result
of duplicating physical pH strips samples between training and
validation datasets; this is problematic because the noise between
different strips of the same class was not accounted for, and
samples were essentially duplicated as pre-processing mitigated
orientation variability efforts. We further find that regression is
a more suitable approach for this domain, as pH values are on
a continuous, logarithmic scale, and decimal differences in value
can have significant biological consequences. In this spirit, we
find that mean squared regression errors as low as ∼0.033 are
achievable.

Index Terms—machine learning, regression, classification, sup-
port vector machine, linear discriminant analysis, nearest neigh-
bors, pH, principal component analysis, image processing.

I. INTRODUCTION

GROWING cell cultures for industrial-scale chemical
output is a very difficult task. Large bioreactors cost

tens of thousands of dollars and require complex, specialized
machinery to operate. An alternative idea is to make use of
many 5-gallon buckets, with a Tyvek membrane on top that
allows air to pass through the system, but blocks liquids [1].
With a pump inside the bucket to mix nutrients with the cells,
we essentially have a low-cost bioreactor. We need to test the
pH of each bucket periodically to determine when to feed
the cells. This can be done in a cost-effective manner by
using paper-based strips that are briefly submerged into the
solution. This method of bioreactors can only be profitable
if there are many buckets - on the order of hundreds or
thousands. Therefore, we need an efficient, automated method
of determining pH from the test strips. The literature on this
suggest that in practice, smartphones are used as the source
of these pictures [2], [3].

Mutlu, et al., 2017, uses a Least Squares Support Vector
Machine and a Support Vector Machine in order to classify
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Fig. 1. A photo of a pH strip captured with a hand-held smartphone under
standard household lighting. This pH strip was submersed in a buffer with
a target pH value of 8.70. The wet pH strip occasionally had solution leak
across panels.

images of pH strips by their pH values, capturing the images
using a Smartphone camera and with various lighting and
positional arrangement conditions [2].

In this paper, we critique Mutlu, et al. by discussing the ex-
perimental design choices made, replicating the experimental
conditions tested to the best we can under our limitations, and
extending their work to regression, which we argue is more
scientifically relevant and has higher utility.

II. EXPERIMENTAL SETUP AND PRE-PROCESSING

We collected our own data for this study. Mutlu was able
to capture the range of pH values comprehensively through
the use of adjustable chemical buffers. This allowed them
to train on chemical solutions with integer pH values. They
also were able to determine ground-truth labels for their data
points by using a digitized pH meter. We were more limited
in our resources; we had a fixed set of non-adjustable buffers
and we took the label on the bottle as the ground-truth label
for regression. In total we hand-held a smartphone to capture
10 samples under standard household lighting of pH strips
submersed in the following 9 buffers: 2.22, 4.40, 4.47, 5.31,
6.28, 7.00, 7.70, 8.70, 10.0 (Fig. 1). These fixed non-integer
pH values may be a source of irreducible error for us when we
rounded these values to the nearest integer when performing
classification. However, we wanted our model to be more
robust to noise and to be applicable in a more reasonable
environment, where a researcher would not have to use a
custom apparatus remove any external sources of light [2],
[3]. Mutlu waited for the strips to dry before taking pictures,
but we decided to capture the images while they were still wet
since we imagine that pH strips are read while wet in practice.

We note that for each sample taken, we submersed a fresh
pH strip into the solution, which is in contrast to the procedure
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Mutlu used. This approach is better because when Mutlu took
multiple pictures of the same physical strip, they introduced
any peculiarities of that strip into the dataset multiple times.
Even though Mutlu exposed that physical strip to different
lighting conditions and orientations before taking its picture
again, any noisy details unique to that strip remained in
all photos taken of it. We also argue that after their pre-
processing techniques of specific orientation rotations and
gamma corrections, many of these images may have ended
up extremely similar regardless. Also, due to the symmetric
nature of a camera flash, many of their rotations will receive
the same lighting conditions from the flash, thus compounding
the issue of reusing data. This can potentially lead to a false
inflation in model accuracy due to images of the same physical
strip being in both the training and testing set during k-fold
cross-validation.

Mutlu performed experiments in which images were cap-
tured under various lighting conditions: with a light-shielding
apparatus, without the apparatus, sunlight, fluorescent, and
halogen. The intent of this was to show that a model trained
under one lighting condition could be used to predict samples
from another condition with reasonable accuracy. In the pre-
processing stage, Mutlu rotates the images so that the strips
are all in the same orientation. We do not do this because all
of our photos were taken with the strip in a relatively vertical
position. In fact, we argue that Mutlus efforts to arrange the
pH strips in random positions and orientations is removed by
their pre-processing efforts before this feature is exposed to the
model. Mutlu also saves the images under a variety of filetype
formats to see if there is any effect. We did not do this since
they did not report any significant differences and this may
be because this is similar to downsampling since the fidelity
of the image data is never significantly compromised. Further,
Mutlu performs gamma-correction during pre-processing. We
argue that this should not be done since this relies upon
prior information on how the given lighting condition is to
be handled; Mutlu reports that when lighting conditions were
mixed, accuracy decreased and we believe that this is because
gamma-correction at pre-processing was not as effective. At
the conclusion of pre-processing, Mutlu extracts out the RGB
color values for each of the four panels of the pH strip to use
as 12 features for the models.

For our study, as Mutlu did, we extract out the RBG values
from the four panels, but we do this as our first step and use
these original features for our first experiment. In order to
extract the colors, we first crop the original image using the
box specified from the horizontal (Fig. 2a) and vertical (Fig.
2b) Sobel edge-detection filters, as illustrated by the red lines
in the images. We then apply a repeatedly-opened, distance
eroded binary threshold (Fig. 2c) to get the center regions of
each color square from the original image (Fig. 2d).

From there, we extract the 12 features by taking the average
value RBG values from each of the four color boxes (Fig.
3a). We then generalize Mutlus experiments by artificially
applying randomly generated lighting conditions to our data.
This way, we do not correct for lighting before training a
model like Mutlu does but rather, introduce lighting conditions
to our homogeneous dataset so that our model can learn to

Fig. 2. Image preprocessing procedure: (A) Horizontal Sobel filter applied
on a grayscaled pH strip image. The red lines represent the regions to crop
the image at. (B) Vertical Sobel filter applied on a grayscaled pH strip image.
The red lines represent the regions to crop the image at. (C) Binarized mask
of the original image, cropped based on the Sobel filters, and eroded to get
the center color regions. (D) Final masked image, isolating the four color
squares.

Fig. 3. (A) The colors extracted from the four panels of a pH strip, stored in
code as a total of 12 RGB values. (B) Gamma correction with a parameter
of 1.5 applied on the raw extracted colors. Gamma correction nonlinear maps
each color to effectively lighten or darken the image. (C) Hue rotation of
-60 degrees around the color wheel applied on the raw extracted colors. (D)
Application of both a gamma correction of 1.5 and a hue rotation of -60
degrees on the raw extracted colors.

ignore lighting conditions on its own, rather than having to
rely on manual and lighting condition-specific pre-processing
methods. Specifically, in our second experiment, we gamma
correct each sample with a uniformly chosen coefficient be-
tween 0.5 and 1.5 (Fig. 3b) because this mimics the nonlinear
luminescence introduced in captured images [4]. In our third
experiment, we perform hue rotation with a uniformly chosen
degree between -90 and 90 degrees (Fig. 3c). In our fourth
experiment, we apply the random lighting conditions from
both experiments 2 and 3 simultaneously (Fig. 3d).

Both Mutlu and we round our pH labels to the nearest
integer and use one-hot encoding to represent the 15 pH value
classes (from 0 to 14). We both also divided our data into
training and validation sets in a k-fold cross validation fashion.
Mutlu used k=10 according to the literature, while we chose
k=3 in a stratified fashion in order to guarantee that samples
from each class are present in all our training and validation
sets (since we only had 90 data points to work with).

While Mutlu tested support vector machines (SVM) and
least-squares support vector machines (LS-SVM) models for
classification, we chose to use a much wider suite of both re-
gression and classification models, including ridge regression,
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Fig. 4. Raw color extracted data projected onto two orthogonal axes such
that variance captured is maximized.

linear discriminant analysis (LDA), SVM, and k-nearest neigh-
bors (kNN) in an effort to achieve higher test set accuracy.
We also performed grid searches over several hyperparameters
for each model, and employed scaling and dimensionality
reduction techniques like principal component analysis (PCA)
to further boost accuracy for certain methods.

For our study, we used Python 3.6.3, NumPy 1.13.3, scikit-
learn 0.19.1, Matplotlib 2.1.0, and Open Source Computer
Vision Library 3.3.0.

III. RESULTS

A. Pre-Processing

For select experiments, we used PCA in order to project our
data into a lower-dimensional subspace in order to simplify our
models and hopefully increase accuracy. We hyperparameter
tuned across different numbers of components for the appli-
cable models. We can see that the classes cluster well, even
with projection onto only two axes (Fig. 4).

B. Classification Models

As in the Mutlu paper, we first used Support Vector Ma-
chines (SVM) for classification across the four experiments.
Classification accuracies of 98%, 96%, 88%, and 79% were
achieved using 7, 8, 9, and 9 PCA-derived components respec-
tively. As the regularization strength decreased, the accuracies
for all but the third experiment generally increased. The third
experiments SVM model performed slightly better with greater
regularization strength (Fig. 5, 6).

A classification model using Linear Discriminant Analysis
(LDA) was also tested across the four experiments. The train-
ing data was transformed using Principal Component Analysis
(PCA) with the number of components varied between 1 and
12 (Fig. 7). Using the raw color data from the first experiment,
a PCA projection of the data using 12 components resulted
in no loss in test accuracy (100%). Concerning the second
experiment, the LDA model achieved its highest accuracy
of 91% using 12 components. Again, the addition of color

Fig. 5. Support Vector Machine Classification Model. The Y axis is the
Accuracy (percent of predicted labels that are correct) and the X axis is the
regularization strength. The four lines represent the four datasets we used: no
color change, with gamma modification, with color rotation, and with both
gamma modification and color rotation.

Fig. 6. Sample confusion matrix for one fold of three-fold cross validation
for SVM model. The confusion matrix plots the predicted class on the X
axis, and the true class on the Y axis. Therefore, elements along the diagonal
of the matrix were predicted correctly. In this case, 2 of 27 images were
misclassified.

rotation to the data in the third and fourth experiments reduced
the accuracy of the model to 77% and 72%, respectively.

Using a kNN classification model on the unscaled data
across the four experiments, classification accuracies 92%,
84%, 79%, and 50% were achieved for k = 1, 1, 1, 6,
respectively (Fig. 9, 10). After scaling and transforming the
data with PCA, classification accuracies 88%, 87%, 78%,
and 70% were achieved for k = 5, 1, 1, 1, using 2, 3, 8,
and 10 PCA components, respectively (Fig. 11). Scaling and
dimensionality reduction reduced accuracy on the raw color
data but increased accuracy on the hue-rotated data.

C. Regression Models

Across the four experiments, the regression ordinary least
squares models generally performed best with low ridge
regularization, where log10(λ) ≤ 0 (Fig. 12). The lowest
mean squared errors achieved across the four experiments
were 0.033, 0.078, 0.78, and 0.88, respectively. The lowest
mean squared error for the regression model (0.033) was



EECS 189, UNIVERSITY OF CALIFORNIA, BERKELEY, DECEMBER 2017 4

Fig. 7. Linear Discriminant Analysis Classification Model. The Y axis is
the Accuracy (percent of predicted labels that are correct) and the X axis is
different number of components we project the data onto when doing PCA.
The four lines represent the four datasets we used: no color change, with
gamma modification, with color rotation, and with both gamma modification
and color rotation.

Fig. 8. Sample confusion matrix for one fold of three-fold cross validation
for LDA model. None of the images were misclassified in this fold.

achieved in the first experiment using the lowest regularization
parameter tested (λ = 0.001). The introduction of random
gamma modification slightly increased the error in the second
experiment, but the color rotation added in the third and fourth
experiments affected the accuracy of the model much more
significantly.

Using a kNN regression model on the unscaled data across
the four experiments, mean squared errors of 0.034, 0.109,
0.292, and 0.949 were achieved for k = 2, 2, 2, 3, respectively
(Fig. 13). The lowest error on this model nearly as reliable
as the lowest error achieved using ridge regression (0.033).
After scaling and using PCA on the kNN regression model, the
mean squared error for both the third and fourth experiments
was greatly lowered (Fig. 14). For k = 2, 2 and 11, 12 PCA
components, respectively, these models achieved mean squared
errors of 0.197 and 0.392, a significant improvement over the
other regression models. Concerning the first two experiments,
which did not employ color rotation, kNN achieved mean
squared errors of 0.046 and 0.074 with k = 3, 3 neighbors
respectively.

Fig. 9. K Nearest Neighbor Classification Model. The Y axis is the Accuracy
(percent of predicted labels that are correct) and the X axis is the number of
neighbors used in the model. The four lines represent the four datasets we
used: no color change, with gamma modification, with color rotation, and
with both gamma modification and color rotation.

Fig. 10. Sample confusion matrix for one fold of three-fold cross validation
for kNN model (without PCA/scaling). 2 of 35 images were misclassified.

Fig. 11. K Nearest Neighbor Classification Model, with PCA and scaling
preprocessing. The Y axis is the Accuracy (percent of predicted labels that
are correct) and the X axis is the number of neighbors used in the model.
The four lines represent the four datasets we used: no color change, with
gamma modification, with color rotation, and with both gamma modification
and color rotation.
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Fig. 12. Ridge Regression Model. The Y axis is the Mean Squared Error,
which is 1

n
Σn

i=1(Yi− Ŷi)
2 where Yi is the true value of strip i and Ŷi is the

predicted value from our model of strip i, and the X axis is different levels
of regularization on the model, shown on a logarithmic scale from −3 to
1. The four lines represent the four datasets we used: no color change, with
gamma modification, with color rotation, and with both gamma modification
and color rotation.

Fig. 13. K Nearest Neighbor Regression Model. The Y axis is the Mean
Squared Error and the X axis is the number of neighbors used in the model.
The four lines represent the four datasets we used: no color change, with
gamma modification, with color rotation, and with both gamma modification
and color rotation.

Fig. 14. K Nearest Neighbor Regression Model, with PCA and scaling
preprocessing. The Y axis is the Mean Squared Error and the X axis is
the number of neighbors used in the model. The four lines represent the
four datasets we used: no color change, with gamma modification, with color
rotation, and with both gamma modification and color rotation.

IV. DISCUSSION

A. Classification

The best classification model for the unmodified color
extracted data, as in our Experiment 1, was LDA with PCA
pre-processing using 12 principal components. This result
matched the 100% accuracy that Mutlu 's best model, their
LS-SVM, achieved. To a great extent, an LDA model is
more conceptually sensible than an LS-SVM model for this
application. This is because each pH value class has a single
ground truth strip that corresponds to it – all photos taken are
simply noisy samples from this ground truth strip. Therefore,
it makes sense that the LDA model performs so well – it
estimates the mean features of the ground truth strip and
estimates a covariance matrix surrounding each mean. In other
words, the mechanism of the model directly corresponds with
the way data is generated. On the other hand, LS-SVM does
not offer the same resemblance and in fact, the presence of
outliers in a training set could significantly skew the decision
boundary produced since they will incur a sizeable loss and
force the hyperplane to move.

The SVM classification model also performed quite well,
and outperformed the SVM model implemented by Mutlu with
respect to classification accuracy. In contrast with LDA, SVM
attempts to find decision boundaries by maximizing the margin
between support vectors. The color rotation in Experiment 3
added significant noise, so SVM performed better on these
data with lower C, or stronger regularization, to combat this
noise. On the other hand, the first two experiments involving
the raw color data and the data with gamma modification
achieved higher accuracies as C increased, or regularization
became weaker. This makes sense because the colors in this
data were closer to the ground truth color values for each class.
In Experiment 4, SVM was unable to achieve an accuracy
greater than 80%. Similarly, Mutlu experienced much lower
classification accuracies around 60 − 80% when applying
SVMs to data with mixed light sources.

In our experiments with discriminative classification mod-
els, we chose to use one-hot encodings as is standard for
working with multiple classes; one-hot encoding ensures that
there is no ordering among the classes. However, for our
application, the pH value classes actually do have a natural
and logical ordering (a pH value of 7 is closer to a value
of 6 than 2, for example). This would be an avenue of
future exploration, and we hypothesize that not using one-
hot encoding may further increase our accuracy since nearby
classes only differ by one or two color panels and thus, even
in the presence of noisy lighting conditions, the model will
have a better chance of recognizing the variations between
neighboring classes as opposed to those between each pair of
classes. Further, this would prevent the model from ever being
in a situation in which it must decide between two classes
at opposite ends of the spectrum – with pH as a log-based
scale, an incredibly inaccurate prediction like this could have
disastrous implications and it would be best to avoid such a
possibility.

We also experimented with projecting the extracted color
data to lower-dimensional subspaces using PCA before run-
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ning selected classification models. When applied to the un-
modified extracted color data, we see that the different classes
cluster well and are nearly separable (Fig. 3). The pH test
strips used in this experiment contain four distinct panels
that each react differently to separate ranges of pH values.
The neat clustering found by PCA is likely due to the fact
that in general, solutions with higher acidity result in brighter
colors across the four panels on the pH test strip, whereas
more basic solutions result in darker colors. This is why there
appears to be an ordering in Figure 3, where the vertical
bars of points for each decreasing pH class are organized
from left to right. When using the PCA-projected data with
the kNN (regression/classification) models, we were able to
achieve lower error on the data when hue rotation was applied.
This makes sense because kNN assumes that training points
of the same class should be separated by smaller distances
than training points between classes. This distance assumption
tends to fall apart as the dimensionality of the data increases
but this was not a concern for us since our raw color dataset
already captured 12 dimensions while PCA worked to further
reduce the number of dimensions. Therefore, for the hue-
rotated data, PCA was able to help separate the data into
clusters where kNN could be more effective with lower values
of k.

B. Regression
The Mutlu paper did not explore regression techniques

for estimating pH, yet our experiments show that regression
can be used effectively to achieve relatively small prediction
error, even when the size of the training dataset is under 100
images. We chose to work with a ridge regularization model
(using an L2-norm) and used cross validation to determine
the optimal strength of the regularization. Since we were
working with extracted color data, we chose to not use LASSO
regularization (L1-norm) as there were no extraneous features
to eliminate. However, had we run these experiments with-
out image masking and color extraction techniques, LASSO
regularization may be more applicable, as a regression model
could be trained to ignore pixel data from the background.

The pH estimates from the best regression model tested
had a very low mean squared error (0.033), making further
research in the area of regression models for estimating pH
very promising. Realistically, researchers working with pH test
strips would likely prefer regression estimates for pH rather
than rounded integer classification, as minute differences in pH
can drastically alter the behavior of a solution. For example, in
C2C12 cells, a commonly-used immortalized mouse myoblast
cell line for mammalian muscular cell culture and research, the
optimal growth pH is 7.0 to 7.6 [5]. If we do classification, a
pH of 6.6, far too low for cell survival, will be classified to 7,
while a pH of 7.6, which is in the optimal growth range, will
be classified to 8. While integer binning was used to achieve
100% classification accuracy in the Mutlu paper, these types of
models may not be as useful as regression models in practice.

C. Acknowledging Shortcomings
While both this experiment and the Mutlu experiment used

90 pH test strips in the creation of the training dataset, both

experiments should be repeated with much larger training
sets for more reliable results. Given additional resources, an
increased training set may have allowed for further improve-
ments in training and test accuracy. A larger training set may
have also helped both the regression and classification models
become more robust with respect to noise, including lighting
changes and color correction. More training data would also
help reduce variance across the results of several models.

This experiment could also be repeated with more scaling
and projection techniques in order to further improve accuracy,
especially concerning raw image data involving varying light-
ing conditions. This experiment achieved much lower errors
for color rotation noise using the kNN regression models after
scaling and PCA were used.

However, as expected, the lowest mean squared errors for
each model overall came from the first experiment, where
neither color rotation nor gamma modification techniques were
used.

Further machine learning techniques could be applied to
similar datasets in order to develop more robust models.
For example, neural networks could potentially extract better
features from the images and perform well. However, we found
that for the relatively simple dataset in this experiment, simpler
models would likely achieve similar accuracies while being
computationally less expensive.

V. CONCLUSION

Overall, we were able to develop both classification and
regression models in this domain and obtain relatively high
accuracy and low error. In spite of our similarly-sized dataset
including more varied data for each pH value tested, we were
able to match the classification accuracy (100%) achieved by
Mutlu while mimicking the various lighting changes in the
data. We were also able to extend Mutlu's findings using
regression techniques, and successfully achieved low error in
doing so.

In continuing research, a greater variety of models could be
tested, and models achieving a high accuracy across varied
data could potentially be exported to run on an Arduino
board. This way, the process of estimating pH strips could be
automated. In a similar spirit, the regression models could be
integrated into a smartphone application, so that a researcher
could manually take pictures of the pH strips while the models
run in real time to estimate the captured pH.
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